
The Design and Implementation or~ !(::)cmain Names"
Resolvert

Mark Painter

Computer Science Division

Department or Electrical Engineering and Com~>Uter Sciences

University or California, Berkeley

ABSTRACT

The requests for comment 881, 882 and 883 issu~d by the Information Sci

ences Institute address specific and impending needs or the ARP A/DDN internet

community for distributed name services. The realization or such services at

Berkeley is called the Berkeley Internet Name Domain (BIND). This report

describes an implementation of the portion of BIND called the resolver. The

resolver is a local agent which is responsible for retrieving information on behalf

of the user. Thus, the user interface, inter-machine communication, and, to some

extent, the local storage or data, are all functions or a resolver.

During our implementation of name services, we decided to extend the ori

ginal proposal to allow updates or data by users. Allowing user updates is

expected to greatly increase the number of applications for domain style names.

Our support for updates includes some straight-forward additions to the protocol

that is used to implement name services, and it includes some additions to the

functions offered to users by resolvers. These suggested improvements are among

the subjects of this report.

1. Introduction

us;;:~.

The ideas which are presented in the requests for comment 881, 882 and 883 will be collec

tively referred to as the "domain names proposal". This title is somewhat arbitrary, and refers to

the style in which objects are to be named.

The immediate concern of the domain names proposal, is the impending collapse of the

methods which are currently used for distributing name :md address information among

ARP A/DDN internet users. At the present time, the network information center compiles and

distributes a list of all host addresses. There is no uniform method for locating a specific user's

mailbox address, nor is there a uniform method for determining which services are supported by a

given host. The host table itself is becoming large enough that its management consumes

significant resources.

In the broadest terms, the strategy for dealing with these problems in the future is to distri

bQte both the physical location of the data, and the responsibility for its administration. Clearly,

the most frequent requests for information will be within organi;:ational boundaries, and between

particular organizations which have frequent contact with each other. This suggests distributing

tThis work wu sponsored in pari by the State of California and the NCR Corporation under MICRO gn.nt No.

1-532436-1!l000, :a.nd in part by the Defense Advanced Reasearch Projects A~ency (DoD), ARPA Order No. 4031, moni

tored by the Naval Electronics Systems Command under Contract No. N0003:l-C-OZ35. The views and conclusions con

tained in this document are those of the author :md should not be interpreted :\3 repre,enting offici:a.l policies, either ex

pre~sed or implied, of the Defense Advanced Research Projects Agency or of the US Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
The Design and Implementation of a ’Domain Names’ Resolver

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The requests for comment 881, 882, and 883 issued by the Information Sciences Institute address specific
and impending needs of the ARPA/DDN internet community for distributed name services. The realization
of such services at Berkeley is called the Berkeley Internet Name Domain (BIND). This report describes an
implementation of the portion of BIND called the resolver. The resolver is a local agent which is
responsible for retrieving information on behalf of the user. Thus, the user interface, inter-machine
communication, and, to some extent, the local storage of data, are all functions of a resolver. During our
implementation of name services, we decided to extend the original proposal to allow updates of data by
users. Allowing user up dates is expected to greatly increase the number of applications for domain style
names. Our support for updates includes some straight- forward additions to the protocol that is used to
implement name services, and it includes some additions to the functions offered to users by resolvers.
These suggested improvements are among the subjects of this report.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2-

the data according to natural administrative boundaries. The dcm2.in names proposal is a prcto

col specification for such a distribution c(address information.

Distributing data complicates its retrievaL As the data may not be present on the local

host, there must be a means or retrieving it from remote hosts. This implies that there must be

some method of locating an appropriate remote host. Since the cost of establishing a virtual cir

cuit between processes is believed to be greater than the cost of using "best effort", datagram

communication, an unreliable communication mechanism is assumed. Thus, during the processing

of a request there may be lost or duplicate communications. For reasons of efficiency, it may be

desirable to make loc:l.l copies of frequently requested data. Also, in the process or locating an

appropriate remote host, it is importa.n t to detect referrals to hosts which have already been

queried. Thus, it is desirable to record what information is requested and the responses received.

These problems are significant enough to warrant a specialized mechanism for their solution.

A resolver is such a mechanism. As the resolver is the means by which users will retrieve infor

mation, it necessarily includes a user interface. In our case, users are C language programmers.

The interface to our resolver is a library or subroutines which insulate users from the details of

the implementation of name services. These subroutines offer, :unong other things, the retrival

operations which are supported within the database: specifically, .~tondard queries, inverse queries

and completion queries (to be defined in Section 2.2.2.1).

The proposal attempts to be general enough to support future applications, as well as, solve

~crrent problems. To this end, there are features in the proposal for adding yet to be defined

ds.ta types, a.nd there are features to facilitate the crossing of protocol boundaries. Noticeably

absent from the proposal are features for user level applications of name service. For example,

facilities for user updates, and support or process to process level protocols are lacking. Section

2.2.2.2 of this report will discuss extensions to the proposal to support those features. This sup

port includes three new types of query: addition queries, deletion queries and modification queries.

The remainder o(this report is divided into six major sections. Section 2 provides the back

ground for the project. Section 2.1 discusses the organization of the documents which describe

the original proposal. Section 2.2 is a description of what services were to be provided by the

implementation. This includes both the original proposal, and ideas for its extension. Section 2.3

discusses the relationship between the user's view of services and efficiency and reliability. Sec

tion 3 is a statement of the goals or the implementation. Section 4 is a discussion of the current

implementation of the resolver. Section 4.1 describes the process structure of the resolver. Sec

tion 4.2 is a concrete description of how the current implementation presents name service to the

user. The discussion of the implementation will then proceed to issues which do not directly con

cern the user. Section 4.3 describes the implementation or the protocol and the design choices

made in the relationship of resolvers to name servers. Section 4.4 describes the internal details of

the resolver's implementation. Section 5 is an attempt to objectively evaluate the utility of the

current design. Section 6 discusses future work. Finally, Secticn 7 is a summary or what was

accomplished and what was learned during the project.

2. Background

This section discusses what was to be implemented. The ciscussion focuses on the abstrac

tions which were to be realized. The realization of these abstracti:ms is described in Section 4.

2.1. Content of Documents Which Describe the Original Proposal

There are three documents on which this work is based. These documents are requests for

comment 881, 882 and 883 which were issued by Information Sciences Institute. In the remainder

of this report they will be referred to as "rfc's". Since thy are fundamental to this report, their

organization will be briefly discussed here. Sections 2.2.1.1 and 2.2.1.2 summarize the aspects of

these papers which are relevant to the resolver.

- 3-

:.1.1. Request for Comment 881

Rfc 881 discusses both the need for conversion to the dom~in names system, and the admin

istrative details of the conversion. The p:-ocess of conversion is a. formidable task. Its difficulty

should not be underestimated. However, this has little Jirect bearing on the design of the

resolver. The most compelling message of t~is rfc is the need to quickly get an effective mechan

ism operational.

2.1.2. Request for Comment 882

Rfc 882 is a general description of the domain names proposal. The level of the discussion

is roughly comparable with the level of the discussion in Section 2.2. If this report should fail to

illuminate the reader, rfc 882 is a good second source for the ger;e:-d concepts invclved.

2.1.3. Request tor Comment 883

Rfc 883 is an elaboration of rfc 882. It contains a preliminary specification of the name

server protocol. Therefore, it was the document which was most closely consulted during the

implementation. Aside from giving a concrete specification of the name server protocol, rfc 883

contains suggestions for the implementation of name servers and resolvers. The :esolver which is

described in this report deviates from some of those suggestions. This is discussed in Section

4.3.2.

2.:. Overview of Propoaed Design

This section discusses both the desigu as was proposed in the rfc's, and extensions to the

design. Every effort has been made to distinguish my ideas (rom the domain na1>1es proposal.

However, in discussing what has been implemented the two are necessarily intertwined.

There are two aspects of the domain names proposal which have a particularly strong

influence on the implementation of the resolver. First, the way in which data is organized and

maintained affects the mechanics of the resolver. Second, the services which are supported by the

database determine what services the resolver can offer the user. These two aspects are discussed

separately.

2.2.1. Name Space

A domain name corresponds to some logical entity. For example, a person, a particular

machine, or an administrative boundary. Data which is appropriate to the object is associated

with the domain name. This data may be specified with the domain name and an indication of

the "kind" or data which is desired.

Domain names are organized into a tree structure. A domain name is, in fact, a sequence of

labels which specify the path which leads to its node in the tree. Each label in the sequence

corresponds to a more specific domain. Although it is expected that the structure of the domain

tree will reflect the administrative and geographic structure of the A.RPA/DDN internet commun

ity' the correspondence or domains to entities is a database design problem, and any binding or

domains to internet addresses is accomplished with the data that is associ:J.ted with a domain

name.

Programs which are responsible for maintaining some portion of the database are called

Tiame servers. Each name server is associated with a domain name. Name servers are responsible

for some, perhaps truncated, subtree or the name space, called a zone of authority. The root of a

zone of authority is the domain name associated with the name server. Thus, it is possible to

determine if a domain name is in or below 3 zone of authority by comparing it with the domain

name of the name server. Each name server has name and address information for the name

servers which are responsible for the branches of the tree which are subtrees rooted in its zone of

authority. Each name server also has r::4-ne and address information Cor name servers above it in

the tree, at least the name servers for the root. It is possible for name servers to cache informa

tion which is not in their zone of authority. It is aLso possible for a zone or authority to be

- 4-

mcintained by more than one name ser'.'~!", l!.lld Cor a name ~2~v~r to maintain multiple zones of

authority. It is even possible for a degenemte name server to cc:~tain only cache data.

The essential point is that the data is structured so that it is always possible to determine if

a particular name is within one of the ~o:1es a particular name server is responsible for. U the

data is not in one of the name server's zones, it is always pos~ible to locate a more appropriate

name server. If the name of an object w l:nown, then the general strategy for retrieving informa

tion about the name is as follows.

The requesting agent queries some known name server. This name server then returns the

requested information, it it has it. Otherwise, it returns the name and address of a name server

which is closer in the domain tree to the requested information. This process is iterated until the

information is located, or determined to be non-existent. This requesting agent is, of course, the

resolver, which is the principal subject or this report.

There are other features in the proposal which complicate this basic design. They will be

elaborated throughout this report. However, at this point it is important to understand the spirit

or the proposal, but not necessary to bow all or its details.

2.2.2. Services Avallabie to the User

What follows is a description of wh3.t services are available to the user. At first, this discus

sion will be in general terms, and will not include specifics of the current implementation. Section

4.2 will be a more implementation specific discussion of how these services are presented to the

user.

Although the boundaries are sometimes blurred, it is useful to distinguish three categories of

service. There are services which are mandated by the domain names proposal. There are ser

vices which are proposed as extensions to the domain names proposal. Lastly, there are services

w'hich affect the performance and reliability of the resolver, but z.re to some extent independent of

the basic update and retrieval operations.

The distinction between the specification and its extensions is important to the general dis

cussion, but both were implemented. So, the implementation specific portion of the discussion in

~ection 4.2 will only make distinctions between function and policy.

2.:.2.1. Services in the Domain Naces Proposal

The services which are mandated by the domain names proposal are three types of queries

for interrogating the name server database. These query types are standard queries, completion

queries, and inverse queries. In fact, only standard queries are required by the proposal. The

other query types are simply recommended. If they are successful, all of these queries will return

items of data called resource records.

~.%.%.1.1. Standard Queries

Standard queries form the backbone of the domain names system. A user specifies a domain

name, the type of data desire~, and the clasB of the data. In the absence of unrecoverable net

work failures, the resolver will either be able to return the requested inforrpation, or inform the

user that the information does not exist. The method of locating an initial name server !or the

resolver to try is, however, left to the resolver's implementor.

Here classes roughly correspond to host to host level protocols. Types correspond to certain

~eneric kinds of data, such as addresses, user mailbox names, and domain name aliases. The for

mat or the data portion of resource records is both type and class dependent. Also, for a given

domain name, there may be more than one resource record of the same type and class.

When requesting data, it is possible ~o specify a wild card in the type field or the request.

For example, it is possible for a user to request all of the resource records which are associated

with a domain name and and which have a type field pertaining to mailboxes.

- 5-

Domain names are a sequence of labels. The rightmost label in the domain name is the root

of the domain tree. The leftmost bbel is the most specific. Thus, domain names are read in the

opposite order from UNIXt path names. It is recommended that labels be composed of sequences

ol letters, digits and hyphens, starting with a letter, where case is not significant. Labels can be

at most 63 bytes in length. In their external representation, the labels in a domain name are

separated by dots. Internally, each label is a byte which specifies the length of the label, followed

by arbitrary data. The root is signified by a label of zero length. Domain names terminate when

the root label is found. Normally, the next label starts where the previous one ended. However,

the byte which specifies the length of the next label may be tagged to indicate using indirection

to locate the next label. This indirection can be used to save space when several names have the

same rightmost labels. Thus, the internal representations are called compressed domain names.

As was mentioned above, the items of information which are returned are called resource

records. Each resource record contains the domain name which the data pertains to, the class of

the data, the type of the data, the data's length, and a maximum time that the data can be

cached, as well as the data itself. The additional fields are occasionally of interest to the user; for

example, when the user requests multiple types of data to be returned by specifying a wild card in

the type field of the request.

2.2.2.1.2. Completion Queries

Completion queries are identical to standard queries, except that the domain name needs to

be only partially specified. Specifically, only the leftmost characters in a domain name are given

to the resolver. The method of locating an appropriate name server for a completion query is left

to the resolver's implementor. There is no guarantee that suitable dz.ta will be located even if it

exists and there are no network failures. However, if completion queries are suitably restricted,

they may be a great convenience to the user.

It is expected that the majority of queries will be for data which is local. However, full

domain names may be many characters long. So, specifying a complete domain name with every

request may be quite bothersome and often unnecessary. Completion queries provide a mechan

ism to support abbreviated requests. However, generating all possible suffixes may be prohibi

tively expensive. So, I recommend that the search be restricted to whole label matches and a few

predefined label suffixes. For example, at Berkeley we might append "ucb" to any name used by

a completion query for which no whole label match could be found. If that failed to produce a

match, the search would be abandoned.

There are actually two types of completion queries. One type requires that the domain

name which matches the name used by the completion query must be a unique best match. The

other allows multiple domain names to match the name used by the completion query. Our

implementation of the resolver does not emphasize this distinction, but allows users to specify

that multiple matches will be allowed (section 4.2.2.1).

2.%.2.1.3. Inverse Querle11

Inverse queries are unreliable in the same way that completion queries are unreliable. In an

inverse query, the user specifies the data, its type and class. The resolver then attempts to locate

a name server which is capable or determining the domain names which correspond to the data.

This is another case in which fields of the resource records which are returned, other than the

da.ta field, will be of interest to the user. Once again, the method of choosing an appropriate

name server is left to the resolver's imprementor .

. \n example use of inverse queries would be for debugging purposes. If an erroneous com

munication is received, it might be desirable to present the source of the communication in

human readable form. Similarly, inverse que:-ies may be useful in locating erroneous entries in the

name server database.

tl'NIX i8 a trademark of Bell La.bora.torie3.

- 6-

The algorithms for standard, completion, and inverse ('··:o:ies are discussed in depth in

r[c823 and rfc882. For the purposes of the present discussion i~ :l' merely necessary to have a gen

eral idea of their nature.

2.!:.2.1.4. Authoritative Name Scrven

The domain names proposal allows data to be cached for performance reasons, but there are

no mechanisms for guaranteeing the instantaneous consistency of the database. It is expected

that most applications of name service will be able to tolerate temporary inconsistencies in the

database. However, there is a mechanism for users to specify that they wish to sacrifice perfor

mance in favor of reliability.

This mechanism is the notion of authoritative name servers. The idea is that each zone of

authority will have a set of servers which are responsible for insuring the timelyness of their data

for that zone. Other name servers may cache data from the zone, but they do not attempt to

refresh the contents of their caches, nor do they necessarily maintain complete information for the

entire zone. Thus, the data of non-authoritative name servers is more likely to be out of date, or

incomplete. Therefore, users may request that their queries be answered only by authoritative

name servers. It should be noted that specifying that the query must be answered by an authori

tative name server does not absolutely guarantee that consistent data will be returned. This is

because authoritative name servers periodically refresh their dat:1bases.

2.2.2.1.5. Primary Name Servers

ThP.re is a primary copy of the resource records in each zo::te of authority. The name server

which is responsible for propagating this copy to the authoritative servers for the zone will be

called the primary server for the zone. Authoritative name servers for a zone contain resource

records which can be used to locate the primary server for the zone. In fact, authoritative name

servers use this data to periodically contact the primary server, to ensure that their own data is

up-to-date.

An important reason for the existence of authoritative name servers which are not also pri

mary name servers is that, if the host of the primary should f3il, the data for the zone will still be

available. Additional authoritative name servers also increase the availability of data for a zone

by distributing the burden of answering queries for that zone among several hosts.

The original proposal does not include explicit mechanisms for users to locate primary

copies of resource records. However, the introduction of user updates increases the likelihood that

the degree of consistency maintained by authoritative name servers will not be sufficient for all

applications. Also, primary servers play a role in how updates are implemented. So, their

existence is important to the discussion which follows.

:z.~.2.2. Proposed Extenslona

T!J.is section contains suggestions for modifying the name server protocol. The principal

departure from the proposal is the way in which updates are handled. The extensions which are

described here have been implemented within the resolver.

2.2.2.:.1. User Updates (Addltlon, Deletion, Modlfieatlon}

The design proposed in the r!c's handles updatt'S in a very limited way. Specifically, there

are to be text files which will be updated by hand. These t!!es will periodically be read by the

primary name server for a zone. The data in the files will replace the primary name server's data

base. Other authoritative name servers will obtain the new data when they contact the primary

name server, and replace their databases. This scheme avoids a number of difficult problems.

However, it severely limits the generality or the name service. If each change must be cleared

with a system administrator, it will be impossible to support the naming of short-lived objects,

such as processes, and impossible to support the naming of objects based on personal preferences,

such as files.

-7-

......
For that reason, our group has <.lc:cided to implement t:~e:r :.:7dates. Many of the problems

encountered relate to the implementation of the name servers, ~~d will not be discussed in detail

here. The implementation of name servers is expected to be discussed in a separate report

[Zhou84]. However, the user's view of updates has a direct bearin~ on the implementation of the

resolver. The genera.! scheme will be discussed here, and the :!~ditions to the name server proto

col are summarized in Appendix A.

The scheme which was adopted makes visible the distinction between primary name ser1ers

and authoritative name servers. Updates must be made to the primary name server. Processes

and users which require immediate access to the new information must also be able to distinguish

primary name servers.

When an update is made, the new information will be propagated to secondary name servers

in much the same W"J.Y that is suggested in the prop05al. The only substantial difference is that

changes to the database will be made incrementally, rather than by replacing data for the entire

zone.

There is no notion of a transaction which spans multiple messages. This restriction consid

erably reduces the complexity of the update algorithms. [Bern81] surveys techniques for guaran

teeing the serializability of transactions which span multiple messages and multiple machines. All

of these techniques are costly in both the complexity of their implementation and their running

time.

For user queries, an unreliable communication medium is assumed. This has consequences

on the semantics of the update operations. Specifically, update requests may be received more

t:.tan once. Therefore, the operations must be meaningful when they are executed repeatedly. An

update which is acknowledged has been successfully installed in the database at least once.

There are three update operations, namely, addition, deletion, and modification. It is not an

error to add a record which is aiready in the database, nor is it an error to delete something

which is not in the database. Similarly, it is not an error to repeatedly make the same

modification. However, modification is the only update operation which may fail. It is an atomic

deletion and addition, and it is an error for neither the old nor the new data to be in the data

base. Name servers :eturn a distinct response code, il nothing in the database was changed by an

update operation.*

The modify operation provides support for a transaction which logically consists of a read

followed by a write. Unlike the techniques proposed in [Bem81], ~he burden of guaranteeing seri

alizability is carried by the user. Modify can be used to ensure that the data which was read has

not changed between messages: since it fails, if the old data is no longer present. At this point

the user would reread the data and try again. This does not provably prevent process starvation,

as there is no guarantee that the data could not be changed after every read, but in practice star

vation is not expected to be a problem. In keeping with the idea that updates must not require

the coordination of name servers, both the old and the new data must be on the samf' host.

Thus, there is no possibility that a modify would require messages between name servers.

To simplify the handling of acknowledgements and response codes, all updates must apply

to a single domain name, and a single class. This is because resource records with different

dom:Un names or classes may be in different zones of authority. Thus, it is possible for their pri

mary servers to be distinct. It is therefore possible that no single response code would apply to all

or the records in the update. This restriction is also used to guarantee that the old and new data

for modify operations are on the same machine. In the c2Se or additions, resource records are

assumed to be added to tile database one at a time. Updates are expected to be sufficie-atly infre

<l'lent that the performance penalty for allowing only record-at-a-time additions will be accept

able. For deletions, wild cards are allowed in the type and data fields without violating the

assumption that all affected records are on the same machine. T!lis is a user convenience which is

e~.<;J' to implement.

•T!:e r~~olver conveys this information to userll by eetting the v~ue of the g!ob;J -variable "errno".

- 8-

2.2.2.~.%. Support for Lo~t!ng ?~·:~::.!'3' Servers

Within the specifications of the original propos:1l, a primary name server may be located by

a resulver in a somewhat cumbersome way. The resolver first issues a query for the domain name

until it receives an authoritative answer. The zone which the domain name be!ongs to can be

inferred from which server gives the authoritative answer. Th~t server can then be queried for

the location of the primary server for the zone. The last step is to direct the original query to the

primary name server.

The cumbersomeness o(this a;>proach makes it desirable for name servers to be able to dis

tinguish queries which require a primary response. In the case of retrieval queries, this implies

another bit flag in the packet header. Update queries may be distinguished by a distinct opcode.

In order for name server records which are cached in non-authoritative name servers and resolvers

to be useful in identifying primary name servers, it is also desirable to extend data on name

servers to include information as to whether or not they are primary. Otherwise, caches will be

useless in expediting the search for a primary name server. Authoritative name servers do not

require such additional data, because the domain field of an authoritative name setYer record will

alw~ys be the best possible match to a domain name in its zone of authority. Thus, queries will

be directed to authoritative name servers, if they are present in a cache.

~.2.2.2.3. Support for Proeess to Proeesa Level Addresses

-- ,..._ One of the reasons for allowing user updates is to provide support for the naming of

processes. At present, there is not sufficient support for process to process level protocols. For

the time being, it is assumed that this will be corrected by adding more information to address

type resource records. This works especially well for protocols which are implemented on top of

the internet protocol. In this situation, process addresses are simply more specific instances of

intemet addresses, in that they contain a port number and a protocol number in addition to an

internet address [rfc791J. Such records can be distinguished by their greater length by programs

which are aware or the distin~tion. Programs which are unaware of the distinction should not be

affected.

One of the most attractive reasons ior adding user updates and better support for process

level addressing is that it would then be possible to support process rendezvous. One process

could bind itself to an unused port, and register with a name server, and another process would

then be able to retrieve the address with a symbolic name for the first procestl. For the purpose

of the present discussion, a port number can be thought of as the address of a process on a given

host.

Name server support of process rendezvous would be a great improvement to the facilities

that are available now for establishin~ connections between user processes [Lefi83j. In order to

communicate with a process it is necessary to know what port that process is using to recieve its

messages. This can be done by agreeing on a port number ahead of time. However, there is a

requirement that processes use port numbers which are unique on their host. So, it is possible for

some unrelated process to prevent the rendezvous by using the agreed upon port. The alternative

is for a process to use any port which is free at the time, register its port number with some

agent, and then the port number could be retrieved from this agent. Unfortunately, there is no

convienent mech:lnism for doing this at the present time. This situation is almost certainly an

iffii)ediment to the development of distributed applications.

2 • .:!.~.:!.4. Dbadvantagea

In defense oi the authors of the domain names proposal, we must s::.y that introducing user

upd::1tes and process rendezvous forces implementors to solve a number of difficult problems.

These include preventing unauthorized users from altering data, purging transient data from the

dat:lbase when it is no longer needed, and making provisions to ensure that changes to the data

base are not lost when a host crashes. Prob~bly, the most serious of these are security issues. It

is beyond the scope of this report to I;lake protocol specifications which address the need for secu

rity. Rather, this report assumes that these needs can be met within the framework. of the

-9-

current proposal.

In any case, most of the mechanisms for ensuring data security belong in the name servers

and not the resolvers. This is because the data is maintained by the name servers, and the net

work is not a secure communication channel. [Denn82J provides a good introductory discussion of

the distinction between authentication and access control. So, the role of resolvers in security

issues will most likely be limited to including user identification and digital signature in queries.

In the meantime, applications that do not require security, such as experiments with process ren

dezvous, can make use of the enhanced update facilities.

2.3. Eftleleney and RellabWty from a. User VIewpoint

This section describes, in general terms, the kinds of efficiency issues that the user may wish

to have some control over. These issues are primarily a three-way trade-off between the degree of

certainty that the returned data is correct, the overhead of cachi.ng information, and the cost of

transmitting additional messages over the network.

Section 2.2.2.1.4 mentioned that the domain names proposal allows users to specify that

their queries only be answered by authoritative name servers. Section 2.2.2.2.2 suggested that

users be allowed to further specify that their queries be answered only by primary name servers.

These specifications allow the user some con trot over the reliability of the data, but increase over

head by forcing messages to be transmitted even if the data is present locally. However, it seems

necessary to allow the user such controL For example, if inconsistent data is retrieved from a

cache, it seems desirable to allow the user the opportunity to recover by insisting on retrieval

from a reliable source.

The user may also wish to have some control over whether or not data is cached. For

example, if data is cached on a per-process basis the user could either allow or disallow recent

responses from being cached in the address space of his process. Such control over C3Ching might

be important for processes in which memory space is a critical resource, but, as before, the price

paid is an increased number of messages.

A tangential issue is that system administrators may wish to tune the placement and repli

cation of data to its pattern of use. Once again, replicating data increases the space resources

consumed and increases the chances of its being out of date, but reduces message traffic.

Administrators may not wish their choices to be over-ridden by users.

In general there is a wide spectrum of possibilities as to the extent that data is replicated,

the extent to which users will be responsible for managing its replication, and the extent to which

users will be aware of its replication. It is also not clear whether there is a single best solution for

all possible applications or name service.

Although the implementation of the resolvers and name servers will necessarily determine

some of the options which can be allowed the user, it is wise to embed as few real choices into the

design as possible. When there is more experience with various applications of the resolver, it will

be possible to define which parameters should be user settable, and which decisions can be made

within the resolver. At the present time, it seems most important to provide mechanisms allow

ing the user to express concerns about efficiency and reliability. The particular options which are

available are of secondary importance. If it is later found that a user should not have direct con

trol over some function of the resolver, that option can be reimplemented to be taken as a hint.

Obviously, the design should allow more options to be added later.

The mechanisms which are used to give the user control over performance issues can also be

used for passing various ad-hoc arguments to the resolver. The rationale for doing this is two

fold. Fi:rst, it would complicate the use of the resolver if the user were required to specify values

for seldom used options with every call. Second, it gives the resolver a flavor or distinct modes of

operation. Thus, it is possible to isolate the portions of a program which are strictly concerned

with data retrieval from the portions of the program which set the context for that retrieval.

This is i.c~nded to foster the modular design of application programs.

- 10-

3. Design Goals

This section states the points of view which motivated the design of the resolver. It was

most important to implement a scheme which could be used to replace the existing mechanisms

for locating best address information and which could accommodate related applications. How

ever, since it was an academic project, the goal was not simply to produce a software product.

3.1. Ease of Use

The implementation of the resolver involves many problems which are common to almost

all utility programs. The most crucial problem is that it must be easy to use. This means that

users should not have to assimilate a nst quantity of detaiied information before they can make

use of it. On the other hand, it would be inappropriate to restrict the functionality of the

resolver by making a priori decisions on behalf of the user. So, the foremost concern is to provide

a simple, yet powerful, model of name service.

3.%. Eftlciency

Once the resolver is successful in meeting user's needs, nnd becomes a frequently used pro

gram, its use should not unduly degrade the performance of the system which supports it. There

fore, it should not make excessive demands on memory, cpu, io, or the internet networks. These

efficiency issues are not part of the user's view of name service, and, as much as is possible, they

should be treated independent of the user interface. However, there are policy issues which users

should be able to influence, without resorting to recoding the resolver.

3.3. Experiment

Many problems with a design may not be detected until some of the design is implemented.

So, one of the goals of the project is to detect any such difficulties. There are at least two areas

where problems may arise. Some aspects of the protocol design could force a cumbersome and

inefficient implementation. Similarly, the host operating system may not provide suitable

mechanisms for an implementation. Thus, an implementation of the resolver is partly an evalua

tion of the protocol specifications. The ease with which the resolver is implemented is also a par

tial evaluation of the adequacy of the interprocess communication mechanisms provided by the

operating system (in our case, Berkeley 1Jl\.'1X 4.2 BSD).

Given a particular protocol specification and a particular operating system, there is a wide

range of possible implementations. So, one of the goals of the project is to identify, and where

possible evaluate, some of these alternatives. Caching strateg!es are of particular interest in the

implementation or a resolver. Section 4.3.2 discusses the alternatives. Our implementation

included a per-process cache, and Section 5 provides some data about the effectiveness of this

technique. Other techniques would have been more difficult to implement, and were not experi

mented with.

4. Implementnt!on Issues

In this section, design decisions and their rationale are 2iscussed. While the Section 2 dis

cussed what services were to be provided, this section will disc:1.3s how they were provided.

4.1. Ba.slc Structure

The most basic choice in the design of the resolver is its process structure. There are, at

least, three possible process structures for the resolver, each w~th its advantages and disadvan

tages. First, eacil process that communicates with name servers could include code and data for a

complete resolver in its address space. Second, the majority of the resolver's code and data could

be included in the UNIX kernel. Third, the resolver could run as a separate process, and each

process that communicates with name servers would include a sm:J.ll amount of code for communi

cating with the resolver process. In this case, the resolver could either be a child or the client pro

cess or a daemon that was started at boot time.

- 11-

The choice of ;:Jrocess structure is a trade-off between t: e ability to share code and data,

communications costs, and the hazards of altering a successful orerating system. It is desirable to

share code and data to eliminate redundant copies, and thus Eave on memory space requirements.

It is also desirable to share data so that the performance of one process might benefit from data

cached by another.

IC each client program links a copy of the resolver into its own address space, the cost of

communicating with the resolver is the cost of a subroutine c31l, but it is not possible to share

either code or data between processes. It is not possible to share the code because each text seg

ment will be different, and it is not possible to share the data because Berkeley UNIX 4.2 BSD

does not provide mechanisms for sharing data between processes. Even if it were to do so, it is

not clear that there would be sufficient access control to prevent malfunctioning processes from

fatally interfering with the operation of resolvers which were running in other processes.

If the resolver runs as an independent process, it is pOGsible to share code, because all

resolver processes wili have the same text segment. Furthermore, if there is a single resolver pro

cess for each machine, its data will effectively be shared between all processes which use the

resolver. The problems with this approach are that the cost of communicating with this resolver

process will be substantial, and processes will be serialized by access to the resolver process.

A kernel implementation avoids the performance pitfalls of the two approaches above. It is

possible to share code and data in a controlled manner, the cost of communicating with the

resolver is the cost of trapping to change the mode of the processor, and the kernel already main

tains multiple threads of control. However, altering the kernel impedes efforts to standardize

Berkeley UNIX, and, once the resolver is part of the kernel, the resolver will be much more

difficult to modify and debug.

The resolver need not run in privileged mode, but would benefit from the ability to share

portions of its address space between processes. Shared memory, with enforced access control,

would make a per m3Chine cache feasible. Shared memory would also eliminate the need for

redundant copies of resolver code. At present, the only efficient mechanism for sharing memory

between processes is to access the shared memory when running in kernel mode. That is why I

sugsest that it may eventually be desirable to move portions of the resolver into the kernel. An

operating system which supported user defined monitors would be ideal. However, no realistic

Berkeley UNIX 4.2 BSD process structure for the resolver seems entirely satisfactory.

The present implementation of the resolver links a complete resolver into the address space

of each client program. This approach was chosen because it is the simplest to implement, can

probably be a:hpted to either of the other alternatives, and it is not known if the ability to share

code and data is essenti::.l for resolver performance.

4.%. User Interf::.el:! to the Resolver

The resolver is implemented as a set of C language subroutine calls. Here, those calls are

described in considerable detail. This level of detail will provide a tangible basis for what would

otherwise be a. vague philosophical argument about the value of a layered implementation, and

the value of providing a relatively uninterpreted view of the underlying abstractions.

As in the design of a great many other interfaces, there ;_g the question or what should be a

primitive operation, and what operations should users be responsible for. The potentially large

number of types and classes makes it impractical to give explicit support to each and every for

mat (each of these fields occupies 16 bits). It is also not possible to predict the requirements of all

applications. For that reason, the resolver presents a relatively uninterpreted view of the

returned data.

There is one important exception to this rule. It seems desirable to integrate name service

with interprocess communication facilities. Berkeley UNIX 4.2 BSD implements all communica

tions objects using file descriptors [Leff83j. The system caBs which create file descriptors take

structures which contain protocol specific data as arguments. Therefore, programmers are

required to know a considerable amount of detail about the underlying protocol to establish

- 12-

connections between processes. The inclusion of functions in th~ resolver to map domain names

to the structures which are used to create file descriptors could g:e::~.tly increase the transparency

of interprocess communication.

At present, Berkeley UNIX supports the internet protocols, u'DP and TCP. It also supports

communications objects which are based on the UNIX file eystem. Assuming that resource

records for internet addresses are extended to include protocol z.nd port information, as is sug

gested in section 2.2.2.3, the resolver maps domain names for UTIP and TCP communications

objects to the structures which are used to create file descri;;tors. If UNIX class data were

included in the name server database, a similar mapping could be performed for 'UNIX path

names.

The justification for directly supporting domain name to machine address mapping is that

programs which use name service are very likely to wish to communicate with the objects that

they request in(ormation on. Also, the resolter itself uses addre&s records to locate name servers.

Thus, it is possible to enhance the interprocess communication facilities which are available at lit

tle additional cost to the majority of processes which use name service. If it is later found to be

desirable to directly support other applications of name service, the "hooks" in the code, which

were developed to support address mapping, can be used to support these other applications.

As was discussed in section 2.2.2 the resolver provides two orthogonal types of service. The

first category o~ services consists of mechanisms for invoking name service. The second category

of services consists of mechanisms Cor setting the policy of the resolver. These topics will be dis

cussed separately.

4.2.1. Invoking Name Service

The interface to the resolver is a subroutine library Cor C language prograr.J.s. What follows

is a description of each subroutine which is intended to be called from programs that use :tame

services. The programs which use the resolver are expected to include system processes, such as

mailer daemons, experimental programs which execute on multiple hosts, and interactive pro

grams, such as "finger", which returns name and address information about the owner or an

account.

The calls which are provided fall into four general categories. Three of these categories are

the general query types which are described in section 2.2.2.1. The fourth category is for chang

ing the contents of the name server database, as described in section 2.2.2.2.1. These are general

purpose routines upon which specific applications of the name service can be built.

The notation which is used to describe the subroutine calls is borrowed from the UNIX

programmer's n::mual. The include lines at the start of each description indicate files that con

tain needed structure declarations, and the routines are written as they are declared, so that the

types of their arguments and return v<Jues is clearly indicated.

When it is appropriate, the name of a formal parameter is chosen to indicate correspondence

to a field in a resource record. Thus, parameters labeled "type" correspond to types as they were

defined in section 2.2.2.1.1. Similarly, parameters labeled "class" correspond to classes as they

were defined in section 2.2.2.1.1. Symbolic constants for all or the currently defined types and

classes are among the things which are contained in the file "resolv.h". So, it is expected that

type and class arguments will usually be a symbolic constant from this file. Parameters labeled

"dname" are ASCII representations of domain names with labels separated by dots. It is

expected that all such strings will be terminated with the character nulL

Parameters which do not have a correspondence to a field in a resource record will be dis

cassed as the routines are presented.

- 13-

-4.:.1.1. User calla tor gP..neratmg and :..~·tzrpretins standard queries

#include <sysftypes.h>
#include <netinet/in.h>
#include "resolv .h"

struct sock.addr_in •dn_in_addr(dname)
char dname[J;

char •std_query(dname, type, class)
char dnamel];
int type;
int class;

unsigned char •answer_i(i, pt, user_rr)
inti;
char •pt;
USER_R_REC •user_rr;

The pointers that "dn_in_addr" and "std_query" return refer to structures which have been

allocated via a call to the standard user level, memory allocation routine, "malloc". The user is

free to release the space when the result of the query is no longer needed. This style or memory

management keeps the user's data structures disjoint from the resolver's data structures. It also

prevents new results from over-writting old, but still useful results. It is intended that the user

will be unaware of the internal details of the structures returned. In the case of "std_query ", this

convention is strictly enforced.

· Conceptually, "std_query" returns an indexed set of responses to the query specified by its

arguments. This array can be indexed via calls to "answer_i". "answer_i" returns a pointer to

the data field of a resource record. Out of bounds references are indicated by a zero return value.

Here, "pt'' is the pointer which has been returned by "std_query". "i" is the i'th resource record

which was returned. The array of responses is indexed in the same manner as arrays in C: the

first value of the index is 0. "user_rr" is a structure which contains other information about the

resource record, including the length or the data, the domain name, type, and class. The interpre

tation of the data is entirely the responsibility of the user. Thus, calls to "std_query" require

intimate knowledge of the internal structure or the data fields of resource records.

The same model is used with the other general purpose query routines. Specifically, general

purpose query routines return a set of responses. The routine "answer_i" may be used to refer to

specific members of this set. Also, the user is free to release the structure when the data is no

longer needed.

"dn_in_addr" is one of the routines which provides direct support for domain name to

address mapping. It is intended to be easier to use than "std_query". The structure which is

returned can be used as an argument to any system call which uses the "sockaddr_in" structure.

"sockaddr_in" is the structure which is used by user level cal!s to represent internet addresses.

So, it is potentially a quite useful artifact. The user should have to know neither the internal

structure of any resource records, nor the internal details of the "sockaddr_in" 11tructure. How

ever, if the domain name is simply that of a host, it may be necessary to supply a port number

[LefiS3J. Since, the intent is probably to communicate with a process on the host rather than the

host itselt.

- 14-

4.!.1.2. User Calla For Generating and Interpreting Inverse Queries

#include <sysftypes.h>
#include <netinet/in.h>
#include "resolv.h"

char •in_to_dname(addr)
struct sockaddr_in •addr;

char •inv _query(data, length, type, class)
char data[];
int length, type, class;

Both "in_to_dname" and "inv _query" return structure that can be traversed using

"answer_i", as is described in the section above. "in_to_dname" is the inverse function which

corresponds to "dn_in_addr". "inv _query" is for more general inverse queries. Here, "data" is

the data portion or a resource record, "length" is the length in bytes or "data", "type" is the

type of the resource record, and "class" is its class. Since this is a. non standard type of query, it

will be necessary to do a little more work to get at the interesting portions of the resource records

which are returned. Namely, the domain names will have to be explicitly retrieved from the

"user_rr" structure that "answer_i" returns. Both routines return a zero pointer it they were

unable to perform the inversion.

Inverse queries will be successful to the extent that they are supported within the name

servers which are queried. There is nothing to prevent users from asking unanswerable questions.

The user may set the domain that the data is assumed to belong to. When this is done, the

resolver will locate a name server which is authoritative for the specified domain, then direct the

inverse query to the authoritative name server.* The means of setting the domain to direct

inverse queries to, are discussed below in section 4.2.2.

4.%.1.3. User Calls For Generating and Interpreting Completion Queries

#include <sysftypes.h>
#include <netinet/in.h>
#include "resolv .h"

struct sockaddr_in *dnc_in_addr(dname)
char dnamelJ;

char *com_query(dname, type, class)
char dnamelJ;
int type, class;

"dnc in addr" and "com_query" are analogous to "dn_in_addr" and "std_query", respec

tively. The important difference is that these calls require only a partially specified domain name,

as was described in Section 2.2.2.1.2, during the general discusaion of completion queries. As with

inverse queries, the user may set the domain which will be queried, and there is no guarantee that

the query will be answered.

•If the specified doliLlin matches the root of the sone of authority for one of the name 3ervers in the resolver's

cache, finding an nthoritative name server for the domain will not require a.ny qlleries.

- 15-

4.2.1.4. User Calls For Updating the Name Server Dab :-:- :..::e

#include <sysftypes.h>
#include <netinet/in.h>
#include "resolv .h"

add_rr(dname, type, class, data, length)

char dname[J;
int type, class;
char dataiJ;
int length;

delete_rr(dname, type, class, data, length)
char dname[J;
int type, class;
char data[J;
int length;

modify _rr(ndname, ntype, nclass, ndata, nlength, old_rr)

char ndname[J;
int ntype, nclass;
char ndata[];
int nlength;
USER_R_REC •old_rr;

These are the routines for performing user updates. "add-rr" makes certain that the

resource record specified by ·its argument is present in the database of the primary server for that

resource record. "delete_rr" makes certain that the resource record specified by its arguments is

not in the database of the primary name server for the record. "modify_rr" atomically replaces

the type and data fields of "old_rr" with "ntype" and "ndata" respectively. They do not return

data beyond an indication of their success or failure. The implementation of these functions

within name servers is discussed in [Zhou84j. Once again, the user is presented a relatively unin

terpreted view of the services which are available.

4.2.%. Setting the Resolver Polley

Section 2.2.3 of this report mentioned that there should be mechanisms for users to set

resolver policy. This section discusses the mechanisms which are currently available.

There are a large number of options regarding the behavior of the resolver. Our design phi

losophy is to hide much of this detail from casual users by providing reasonable defaults. More

knowledgeable users may alter the behavior of the resolver by resetting these defaults. This can

be done either by making subroutine calls in the process which is using the resolver, or by adding

directives and data to a resolver configuration file. The latter can be used to change the defaults

for the casual user without recompilation.

- 16-

4.2.2.1. User Calla for Altering the Resolver's Behavlot<

set_resopt(set, clear)
char set[];
char clear[];

set_domain(type, domain)
char type;
char domain[J;

"set_resopt" sets and/or clears a number or yes/no resolver options. "set" is the set or

options to be set. "clear" is the set of options to be cleared. Options which are both set and

cleared will be cleared. Both "set" and "clear" are null terminated strings in which each charac

ter corresponds to an option.

The justification for this arrangement is that it is simple and easy to extend. Many or the

potential options in the resolver can be stated in a yes/no fashion. For example, either any

answer is acceptable, or an authoritative answer is required, or, perhaps, the resolver should only

check its cache without sending any messages. The table below lists the options which are avail

able now.

The options fall into three categories. First, it is possible to stipulate the reliability of the

name server that data is retrieved from. The relevant distinct:ons are discussed in Sections

2.2.2.1.4 and 2.2.2.1.5. Second, there are some ad-hoc arguments. There are actually two types

or completion queries as was mentioned in Section 2.2.2.1.2. The distinction is made here to

avoid offering the user two identical sets or functions with slightly different semantics. Also, when

internet address type resource records are extended to include port and protocol information, it

may be necessary to specify the protocol that is or interest. Third, users are allowed to control

some performance parameters, such as whether data can be cached in the address space or their

program, how the resolver initializes itself, and what protocol the resolver uses to communicate

with name servers. Some or the background for these options is to be discussed in Sections 4.3

and 4.4.

The ASCII character which sets and clears an option is listed below the description of the

option in the table. Options which are the result or not making a specification with regards to

related options are followed with the word "default".

- 17-

Table of Current Resolver Options

DATA RELIABILITY AD-HOC PROCESS ORGAN1ZATION

authoritative allow multiple

answer only matches to
('a') completion queries

('m')

primary accept only riisa.ble per-process

answer only UDP addresses cache

('p') ('u ') ('c ')

local cache accept only use virtual circuit

only TCP addresses communication

('I') ('t') ('v')

any answer accept only don't use configuration

(default) host addresses file
(default) {'b')

Table 1

When the resolver is first linked into user code, all options are cleared. This provides a first

level of def:lult, which can be over-ridden by the configuration file. Some options may imply

other options. "set_resopt" does not attempt to draw such conclusions. Our intention was to

make this a low level interface to the resolver's state. In fact, these options are simply mapped to

Hags which are tested at various times during the resolver's execution, and the result of specifying

several options which apply to the same topic is unpredictable. Other routines may be built on

top of "set_resopt" to present a more coherent interface to re~oiver policy for specific applications

of name service.

"set_domain" sets the domain which is to be queried ror inverse and completion queries.

The name servers which are the closest match to "domain" will be queried. "domain" is a null

terminated string which is an ascii representation of a domain name. "type" is one of 'c' for com

pletion query domain, or 'i' for inverse query domain. "set_doma.in" is a separate routine to keep

the code for "set_resopt" as small and simple as possible. In a version of the resolver which were

not linked into user code, a version o("set_resopt" which parsed its input in some non-trivial way

might be more attractive .

.{.2.2.2. The Resolver Configuration FUe

The first time that the resclver is invoked by a process, :c.nd perhaps at other times during

that process' lifetime, the resolver consults a configuration file. The resolver must know both the

address of at least one name server, and the address of its host. The configuration file is the

mechanism for obtaining this knowledge, and other initialization data.

The configuration file uses a somewhat modified and mu.::il restricted form of the master file

format described in rfcS83. The restrictions are due to the fact that it is undesirable to carry the

code and data for parsing the complete master file format in the resolver. The format of the mas

ter file is modified to allow directives which are specific to the resolver, and it is divided into sec

tions so that the intended use of ea.ch resource record, within the resolver, can be determined

from the record's position in the file. The reason of its reserr..blance to master file form:;.t is con

sistency: both so that users don't have to learn some entirely different format, and so that pro

grams which handle master file format can be easily adapted to automate the handling of resolver

configuration files.

- 18-

Normally the configuration data is obtained from a global file. However, the user can over

ride the global file by supplying his/her own file. If no configuration file is available, or if the user

sets an option to disable it, the resolver attempts to locate a na..'lle server on its host before giving

up. If the resolver is unable to obtain initialization data, the query which invoked the resolver

fails and the global variable "errno" is set to contain an indication of the reason for the failure.

Locating a local name server depends on the existence oC some independent mechanism for

obtaining the host's address. Currently, the resolver simply queries the host table, because there

is no other reliable independent mechanism for retrieving this data. So, conversion to the domain

names system will have to include the implementation of such a mechanism.•

Two separate mechanisms for configuring the resolver are provided Cor the sake of versatil

ity. Although caching is discussed in more detail in Section 4.3.2, the following exa..T.ple illus

trates a case where the configuration file would not be useful. It is possible to implement a per

machine cache by running .a name server process on each machine. A resolver would query the

local name server. The local name server would either resolve the query on behalC of the user or

return data that was alrez.dy present in its database. After the local name server resolved the

query, any data that was retrieved from remote name servers would be entered into the local

name server's cache. In this case, the function of the configur:.tion file would be assumed by the

local name server. If this organization o{ resolvers and name s~rvers is adopted, a much simpler

implementation of the resolver would be needed, but it is now possible to experiment with this

organization without recoding the resolver.

The configuration file is divided into four sections. The first section contains resource

records which pertain to the resolver's host. This solves the technical problem of finding an

address for the resolver to use in recieving responses. The second section contains resource

records which pertain to the name servers which are to be consulted when resolving standard

queries. This is the solution to the problem of finding an initial server to query. The third section

contains name servers to direct completion queries to. The fourth section contains name servers

to direct inverse queries to. The last t~o sections are optional, and in both sections the first

name server record encountered is taken to be the domain that queries of that type should be

directed to, unless the domain is reset by the user. These sections, therefore, are 'l. parti:..l solu

tion to the problem of locating an appropriate domain for non-standard queries.

Specially marked lines in the file may be used as arguments to "set_resopt". This provides

an opportunity to set defaults which are not coded into the resolver.

The resolver is unforgiving of errors in its configuration file. When it gets confused, it sim

ply gives up. It is hoped that the primitiveness of the parsing of this file can be lived with,

because the file is expected to be small, used by system administrators and other knowledgeable

people. and infrequently changed. In short, the configuration fi!e is a crude, but effective means

of initializing the resolver.

4.2.3. Summary of User Interface

It should be apparent from the above discussion that the resolver insu!:1tes users from the

intricacies of communicating with name servers, but the operations which it supports are deter

mined by the operations which are supported within name servers. What it provides are essen

tially the abstract services which are described in the domain names proposal and in our exten

sions to the proposal (see Section 2.2.2.2). Features that are not specified in the proposal are left

user setta.ble. These include performance policies, the choice of the initial name server, and the

choice of name servers for non-standard queries. Thus, it is intended to be a general purpose tool

for C programmers. The subroutines which are currently a.vail:;ble are summarized in the table

below.

•The function which is currently intended to Bnpply a unique identifier for the !:oet, "getho:rt.id" d'>cs not J.l

waye returu an interuet J.ddrese.

- 19-

Policy Routines

set_resopt() set_domain()

Query Routines

Standard Queries Completion Queries Inverse Queries Update Queries

std_query() com_query() inv_query() add_rr()

dn_in_addr() dnc_in_addr() in_to_dn:>.me() delete_rr()
modify rr()

Table 2

4.2.4. Satlafylng the Immediate Purpose of Domain Namm

The immediate purpose of the domain names proposal waa to replace a global host table. In

order to do that, it is necessary to replace the existing routines for retrieving address information.

New programs may use the calls described above, but there 3J'e a number of programs which

depend on the the old calls. So, the question of how to convert to the new system is an important

part of the design of the user interface. This section describes a strategy for rewriting the old

routines, that will disrupt existing programs as little as is possible.

In our environment, there are five routines which are currently used to query the host table.

Three of these have semantics which are meaningless in the domain names system. Specifically,

"sethostent" opens the host table for reading, "gethostent" gets the next entry in the table, and

"endhostent" closes the table. The idea behind allowing users to sequentially search the host

table was that, if the user had special needs, such as finding the :1-ddress of a host on a particular

network, he could locate the appropriate records by hand. It is difficult to believe that this will

be a useful procedure once the database is distributed. Unfortunately, there are no parameters to

the calls which would aid in determining what the user is looking for. Therefore, programs which

use these calls must eventually be recoded.

or the other two routines for querying the host table, "gethostbyname" takes a name and

returns an address. This can be simulated with a completion query. "gethostbyaddr" takes an

address and returns the name of a host. This can be simulated with an inverse query. However,

a number of existing programs will probably fail when this is done. The reason is as follows. The

order of entries in the host table is significant in that the first match is returned. Any program

which used this fact to avoid searching by hand will have difficulties, because multiple entries for

the same name may not be returned in the order in which they were stored in the file.

Another difficulty is that the structure these routines return contain a list of aliases for the

record. These aliases are not the same as the aliases used by the domain names system. Rather,

they are used for the same thing that completion queries are used for: namely, the user may type

in an abbreviated name for a host, but there is no requirement. that the alias be composed of the

initial letters of the full name. Simulating the list of aliases exactly will require careful structur

ing of the database, and multiple queries, which is probably unacceptably costly. Therefore,

conversion to domain names will probably lead to the discovery of programs which depend on

particular aliases.

Although the above discussion was in terms of our local environment, the mor:U should be

true for all environments: that is, converting to the domain names system will be a painful pro

cess. It should be done in gradual steps. I suggest first developing some new applications to test

the resolver in production use. Then, routines which can be approxi.."llately simulated with the

resolver should be replaced. The last, and most painful, step will be to purge wutines which

- 20-

cannot be simulated from the system. At that point, the host t3:;!e will no longer be necessary.

4.3. The Resolver's Interface to Name Servers

It is now time to discuss the implementation of the other important interface in the resolver.

The resolver can be viewed as a layer in the implementation of name services. From this

viewpoint, its purpose is to translate high level user requests into standard data formats, and han

dle the mechanics of getting the data to an appropriate name server. One important aspect of

the design is the choice of appropriate mechanisms for the actual t;ansmission of data. Another

important aspect is choosing data structures and algorithms for handling the data once it is

returned. Every effort has been made to treat the two issues separately .

.f:.3.1. Implementation of the Protocol

Fortunately, Berkeley UNIX 4.2 BSD provides mechanisms for transmitting data which are

adequate for the resolver's purposes !Leff83J. This portion of the design is a matter of formatting

a block of data, then making a sequence of appropriate system calls. For the benefit of those

readers which are familiar with the environment, the names of the routines used will occasionally

be-~entioned. However, an attempt will be made to discuss the functions used without relying on

the reader's knowledge of the local environment.

The protocol specification is designed to be used with either datagram or virtual circuit

communication. For reasons of efficiency, datagrams are the preferred mode of communication.

However, this requires that the resolver be capable of handling retransmission when no response is

received after some interval, and consequently it must also handle duplicate responses. Name

servers are not responsible for insuring that there responses arrive at the proper destination.

The typical processing of a query is as follows. First, the resolver will format the user

query. As there is a maximum size for datagram queries, the space for this can be pre-allocated

on the user stack. Then, the resolver will create a UDP communications object using the routine

"socket", and "bind" the object to a random port. This communications object will be used for

the duration of the processing of the query, but "closed" before returning to the user's program.

The user's query may have to be transmitted to several n::.me servers, hefore it is either

answered or determined to be unanswerable. The inner loop of the query processing is as follows.

First, obtain the address of the known name server which is closest to the domain of the query.

r:hen, transmit the query using "send to", and wait for a rezponse for a fixed interval using

"select". The transmission is tried sorr.e fixed number of times. Each time the query is transmit

ted, its identification number is incremented. If a response with an appropr!ate identification

number is received before one of the calls to "select" times out, the response will be entered into

t!ie resolver's data structures for further processing. Otherwise, the resolver will repeat the pro

cedure using the address of the next best name server. If there is no next best name server, the

query will fail, returning an appropriate error value to the user.

When resolving a particular query, it is important to avoid sending the query to a server

lhat has already responded to it. This is handled within the reso!ver's internal data structures by

!lagging servers which have been used during the processing of C:e current query. Thus, infinite

loops are avoided.

It all goes well, the address and domain or a name server which can answer the query one

w:1y or another will eventually be entered into the resolver's data structures. The resolver will

t:ausmit the query to this server, receive an answer and return the result to the user.

There are some exceptional conditions which should be d~~cussed at this point. These are

conditions which are Oagged in the header of a response, and can be handled within the routine

which transmits the query. Name servers return a code which indicates errors detected by them.

Some of LD.ese codes indicate that it would be futile to continue processing the query, in which

case an error code is returned to the user. Other codes indicate that the current server is inap

j:,7C;'r' :t~e for the query, in which case the next best server is tried. There is one condition which

rer;,;i;'~S special action. Specifically, it the response is too large to fit in a datagram, the protocol

- 21-

requires that a virtual circuit be opened, and the query must be retransmitted to obtain the entire

response.

It is also possible to send queries which are larger than the packet size. This is not sup

ported at present, but implementing it would be a simple matter of allocating enough space to

format the query, and setting a flag to force virtual circuit transmission. It is not implemented

now because the packet size is large enough (512 bytes) to hold all currently defined queries for

existing types and classes, and we do not wish to encourage virtual circuit transmissions. So, the

implementation of this feature has not been a pressing concern.

The essential point in the above discussion is that the responsibility for obtaining a com

plete and useful response is isolated within a single body of code. The remainder of t.he resolver is

designed assuming that such a response has been obtained, and is responsible for its interpretation

and storage. It is, in fact, possible to use virtual circuits exclusively, and it would be possible to

switch to some entirely different mechanism for transmitting data, without recoding more than a

single module. The stage is now set for the discussion of what the resolver does with data once it

has been obtained.

4.3.2. Dlvlalon ot Labor Between Resolvers and Name Servers

Although much of the division of labor between name servers and resolvers is implicit in the

protocol specifications, there is considerable latitude in a couple of important ar€as. First, it is

possible to build some heuristics into both the resolvers and the name servers. Second, it is possi

ble for both resolvers and name servers to cache data. The choice of heuristics and caching stra

tegy are primarily of interest for performance reasons.

One type of heuristic which may be of some use is to anticipate what the next query will be,

and to fetch the answer before it is requested. For example, a name server could return related

internet address records when a user mailbox name is requested. Or, a resolver might detect

domain name pointers, and locate the records which they point to. I believe that this type of

heuristic is more appropriate in name servers than in resolvers. Since the number of datagrams

sent--should be minimized, as long as there is room in the packet, it costs nothing for a name

server to include helpful extra data. On the other hand, extra messages are needed by the

resolver to obtain data which is anticipated, but not yet requested.

A related heuristic is for resolvers to selectively retain certain types of resource records, and

very recent responses. If name servers include in their responses data which is anticipated to be

the object of the next query, it is prudent to retain the response until the next query. However,

the relatively small size of a datagram response and the expense of opening a virtual circuit limit

the usefulness or this strategy. Also, queries which require authoritative answers force messages

to be transmitted in any case.

One kind of information which can profitably be retained by resolvers is inrormation about

name servers. The number of referrals to name servers can be reduced by directing the query to

the most appropriate server first. This will be most useful for processes requesting information

that is distant from their local domain. It should be noted th::J.t the number of referrals to name

servers can be reduced even when processes require authoritative responses.

The subject of resolvers retaining data from previous responses leads to the second division

of labor between resolvers and name servers: namely, caching. The most compelling reason for

including some sort of caching scheme in the resolver is that messages are required to retrieve

cache data from a name server. This is particularly costly if the name server does not run on the

same host as the resolver.

The current implementation of the resolver caches data on a per-process basis using the

strategies which were outlined above. Specifically, responses are retained for the next few queries

and information on name servers is retained for the lifespan of the process the resolver is running

in. The user may override this behavior and instruct the resoiver to forget everything. Periodic

flushing of the resolver's cache may be useful Cor processes with a.n extremely long lifetime, and

processes which make numerous queries to diverse domams. ~o caching m2.y be desirable for

- 22-

processes in which space is at a pl'crn.ium, or which only make loc~ queries.

The domain names proposal suggests a scheme where the resolvers transfer information that

they have accumulated to the loc:ll name server's cache. It is only worthwhile to make such a

transfer if the data did not ori:;inate from the local name server. In our environment it would

cost an extra message to make the transfer, and additional changes to the protocol would be

required, as there is currently no mechanism for sending data to be cached to name servers as

queries. Therefore, this is not a p:uticularly attractive scheme.

Another scheme would be !or the local name server to resolve the query and thus obtain

data for its cache. This would tie up the name server when the query was not local. It would

also make it difficult to choose an appropriate timeout for datagram queries, as the query could

take an arbitrary amount of time to resolve. This problem could be solved at the expense of

efficiency by using virtual circuits to communicate with the local name server. A variation on

this scheme would be to install a resolver process on each machine, and user processes would com

municate with the resolver process via a UNIX pipe. The cache would then be in the local

resolver process.

A third alternative is as follows. Local name servers are in a position to identify the

domains on which information is frequently requested. This is true, because the local name server

will often be the source of the first referral when a resolver requests information from a distant

domain. Also, if the local name server maintains a cache, it is reaBonable for resolvers to always

query the local name server before other name servers are tried. Thus, it seems reasonable to

have name servers take the initiative in caching information for zones which they are not authori

tative for. This can be handled either by explicit zone transfer, or by having the name server

periodically invoke a resolver to query for individual domain names. For the same reasons that it

is desirable for resolvers to pay special attention to name 5ervers, name servers should make a

particular effort to obtain information on other name servers.

Another possibility is that resolvers which run on the same machine could pool the informa

tion that they accumulate about the name space. If the resolver is moved into the kernel, this

may be an attractive option, but so long as the resolver maintains its data structures in each

user's data space, the cost of tra!ls(erring data between processes would probably negate the

benefits of this strategy.

The best choice of name server and resolver configurations is probably site and application

dependent, and is worthy of a careful study which is beyond the scope of this report. The best

performance can probably be obtained by implementing the resolver as part of the kernel, and to

cache data on a per-machine basis. However, it is not clear that the increased performance would

be sufficient to justify the loss of maintainability and portability. The present technique of cach

ing data on a per-process basis is useful only for applications which make predictable sequences of

requests, or request data from dist.:..nt domains. All of the other caching techniques require

significant processing to make an entry in a cache, or add a significant overhead to the processing

ofeach query. Therefore, it m<>y not always be useful to cache data.

4... Resolver Data Structures lLild Internal Algorithms

Since the resolver is responsible for storing the results of queries, memory management

within the resolver is a. substantial part of the resolver's function. In some sense, the memory

management portion of the resolver is the glue which holds the user interface and communications

interface together. This is especially true if the term memory management is taken broadly

er.ough to include the creation and maintenance of the resolver's internal data structures, as well

as the allocation of space a::~d garbage collection. Regardless of termi:10logy, this section discusses

the portions of the resolver which could be replaced without alterations to either the user inter

face or the name server protocol.

A potential criticism of the current design is that the int{'rnal structures are too compli

cated, and the increased performance that they provide is not sufficient to justify their existence.

Indeed, they comprise the vast bulk of the code in the resolver, and there are ad-hoc algorithms

- 23-

which would suffice for re5olving queries. These ad-hoc algorithms would require much less space.

In defense of the current design, we can state that there are benefits beyond the ability to

cache data. For example, when our group decided to add updates to the protocol specification, it

wa.s a simple matter to add another algorithm for locating appropriate name servers. Similarly, it

was a simple matter to allow users to specify the domain that they wish inverse and completion

queries to be directed to. v1timately, the uWity of the present design depends on how precious

space is in the resolver's environment. !Jso, there is no existence proof for the claim that simpler

algorithms would both suffice and use less space. Ad-hoc algorithms have a way of growing out

of-bounds when they attempt to cope with special cases.

The remainder of this section will discuss the specifics of the resolver internals. It will start

with how space is managed, and proceed to describe what is done with the space.

When the resolver is first entered, it allocates a relatively large block of space for the

stOrage of responses and internal data. This is accomplished with a call to a user level storage

allocation routine, "malloc". While the resolver is running, it allocates space for its structures by

incrementing a pointer to the next available byte of this large block. When there is not sufficient

space available on the block, another block is allocated. This procedure is repeated as often as is

necessary. When the resolver finishes the processing of the query, it compares the number of

blocks which have been alloc:..ted against an upper limit. It the limit is exceeded, a garbage col

lection routine is run.

The discussion which follows requires the reader to have some knowledge of how queries and

responses are formatted. Packets have a header section which contains an operation code, a

response code, several Hags, and the number of resource records in each of the other sections of

the packet. The other sections are the question section, answer section, name server section, z.nd

additional records section. The name or a section describes the purpose of resource records in it.

The question section is somewhat anomalous as it does not contain complete resource records,

rather it contains just the domain name, type and class that the query pertains to. Standard

queries contain· a single entry in the question section, and all other sections are empty. The

response to a standard query contains the question e.ection of the query that it is a response to.

The general format or a packet is illustrated in Table 3.

Format of Communication Packets Used by Resolvers and Name Servers

Section Fields

codes I question l answer name server additional
count count C0Unt count

header

question domain name type class

more question records

answer domain name I type I class ttl data

more answer records

name server I domain name J type J class ttl data

more name server records

additional domain name J type J class ttl data

more additional records

Table 3

The mech:mics of the garbage collection routine depend on the fact that queries and

responses are stored in the same format in which they are transmitted. In other words, all data is

stored in the format which is illustrated above. So, garbage collection is a. matter or allocating

fresh space, copying the resource records which are to be saved to 3 single packet stru.cture on the

new !'pace, freeing the old space, :J.nd rebuilding the resolver's data structures. This is effective

- 24-

because there tends to be a lot of dead space within packets. Afte'!' initial prOC:!~sing, the header

and question sections are unnecessary, and resource records pertaining to the same domain name

can be grouped together to take advantage of the compressed domain name format. Fortunately,

the routine which builds the resolver's data structures is relatively fast. All structures are built in

a single pass over the paeket.

There is another good reason for storing resource records in datagram format. Not transiat

ing them to some internal format avoids a memory to memory copy of incoming data. In prac

tice, it is usually not necessary to process every byte in a packet. When entering resource records

into the resolver's data structures, data fields are skipped without being inspected, the hash func

tion is computed on the basis of the leftmost label only, and when resolving hash table collisions

domain names can usually be determined to be unequal by inspecting the first few bytes of the

name. This is probably a small savings in comparison to the total overhead of resolving a query,

but there seems to be no substantive reason not to take advantage of it.

The resolver's internal data structures are built up by assigning pointers to interesting parts

of the packet. The basic resolver data structure is a hash table, in which each bucket is a struc

ture containing pointers to the domain name and to the data fields of a resource record, together

with some auxiliary information. Other data structures are built on top of the buckets of the

hash table.

This hash table is the basic structure since it is often desirable to look for records pertaining

to a particular domain name. Examples include locating the answer to a query, finding an

address record which corresponds to a name server record, and grouping resource records for the

same domain name together during garbage collection.

The other major data structure which the resolver builds is a domain tree. The domain tree

I!lakes it possible to locate the most appropriate domain to direct a query to. Each time a name

server for a new domain is located, it is added to the domain tree. If the new domain is the parent

of at least one node in the tree, the tree must be restructured. Otherwise, the new node becomes

a leaf in the tree.•

The space which is used to format user queries is allocated on the stack, a.nd is re-used with

every query. Therefore, it is important that the resource records in the user query do not become

part of any structures which are used beyond the processing or the current query. The user query

does participate in some structures, but these are discarded upon exiting the resolver. The space

tha.t is used in building these structures is reclaimed when g:nba.ge collection is run.

There are other structures which are used only for the processing of the current query. The

most important of these is a list of servers which have already been tried. The list is not us"!d to

check for repeats, but rather to clear the flags of the servers before the next query is processed.

The space for this list is also simply discarded when it has served its purpose.

There is one other potential source of dangling references. Specifically, it is occasionally

necessary to delete resource records from the resolver's cache. This happens when the cache is

updated to reflect the a.ction of a successful user update, and when a name server does not

respond to queries. There is no convenient way or locating references to the deleted record. So,

the record is Hagged as deleted, but it is not removed from any data structures until garbage col

lection is run. At that time, it is simply not re-entered into the cache. Deleted records are

ignored when they are retrieved from the cache.

• The relat1on~hip between two domain name~ can ~ efficiently determined by recording the number of la~la

in the each domain name, ~kipping the extra labels i!l tile longest name, comparing the reaaining labels in the

names painri~e. incrementing a counter if they a.re equal, a.nd setting the counter to zero if they a.re not. The

value of this counter when the end of both namea is ruched ia the measure of doseness between the two names.

If this counter is equal to the number of labels i::1 the shorter name, thlot node is the parent. This rather circni

tona algorithm is nece~sa.ry because the root is the rightmost label in a. donain nan:~. b11t the names must be

scanned from left to right, beca.nse of their fonnat.

- 25-

Much of the time spent in garbage collection is spent in copying resourc:.: records. Some

copying or resource records is avoided by maintaining the resource records which come from the

resolver's configuration file separately. These records are not recopied, but are simply reentered

into the data structures.

There are several data structures which have not been mentioned, and are built to perform

various bookkeeping chores, such as a list or blocks that have been allocated to the resolver.

Also, there are a number of statically allocated variables which retain the resolver's state between

calls. It should be clear that this style of memory management avoids much of the overhead of a

g;eneral solution to memory management problems. This is only possible because all or the infor

mation which is used to build the data structures is contained in the data. The data structures

themselves are not used to represent information, but merely allow faster retrievals of it.

This concludes the discuSBion or the normal handling of the resolver's major data structures.

What remains are some special cases which are worthy of brief mention.

It is possible that the operating system, when requested, will not grant the resolver more

space. This would be either a result or exhausting virtual memory, or, what is more likely, or

the lack of disc space for swapping the process out. There is no guarantee that the resolver's data

structures will be in a consistent state when this happens, and hence it is necessary to take special

recovery action. When this occurs, the resolver immediately flushes all of its data, and returns

an error to the user. The mechanism for doing this is a pair of assembly language routines, one of

which saves all or the registers on entry to the resolver. The other pops the stack back down to

the site of the call to the first routine. The error return can be distinguished by a different return

value. The justification for this extremely machine dependent solution is that otherwise a great

deal of code space and processing time would be spent with every call in an attempt to gracefully

back out of a very rare disaster, and there is no provision in the C language for a goto which

crosses routine boundaries.

The point is that all calls to the resolver pass through a single routine. That routine saves

enough of the machine's state that it is possible to recover gracefully from a disaster. When a

disaster happens the process stack is popped down to the stack frame of this routine,

"mk_query", and the resolver's data structures and open file descriptors are cleaned up.

Another, less serious disaster occurs if the packet size of the response exceeds the size or the

blocks that the resolver normally allocates. This is only possible with responses received on a vir

tual circuit. The solution is simply to allocate a block which is big enough to accommodate the

response. This is possible, since the first two bytes or a virtual circuit response indicate the length

ot the response, but it may cause the situation which was just described. It sufficient space can

be obtained, the garbage collection algorithm will be invoked when the current query has been

proceSBed, and things will settle back to normal operation.

One problem with the style or operation which was outlined above is that it is difficult to

associate with resource records information which is not part of the resource record. This is espe

cially true if the information is intended to survive garbage collection. At present there is no

such information. However, it may be desirable to add such data in the future. For example, it

may be desirable to associate timeout intervals with particular name servers. The solution is

probably to extend the data fields and embed the information within the resource record itself.

This would require a small amount of special handling within the garbage collection routine, but

would allow other routines to remain in their present form.

4.5. Summary of Implementation

The resolver is a layer in name service. It is implemented as code to be linked into a user's

program. The resolver is itself divided into three layers, a set or user level routines, routines

which handle the actual transmission or data, and routines to manage data accumulated from

responses. The user level routines provide the abstractions which are supported within the name

servers, and some control over the internal operation of the resolver. Since these routines insulate

users from the details of the resolver's implementation, it is possible to support applications of

- 26-

name service while the design or the resolver evolves.

-."'The current implementation links a fully functional resolYer into a user's address space.

This includes the ability to cache respcnses from previous queries. This is only one or the many

possible designs.

5. Evaluation

The previous sections have dllicussed various aspects or the design of the resolver. The

resolver's purpose, the user interface, the protocol, and its internal operation, have aU been dis

cussed. The rationale for the parts or the design that are not specified by the protocol bas been

given. This section attempts to answer the question: "how good is it?".

In many ways this is the most important section of this report. Without data to back it up,

personal judgement is mere opinion, and not engineering. Unfortunately, very little data is avail

able at the present time on the performance of the resolver. There are no other resolver designs

with which to compare benchmarks. Nor have we attempted to use analytic or simulation tech

niques to estimate the complexity of the resolver's task. The real evaluation will have to wait for

the resolver to come into production use. In time, it will be possible to discover mistakes and

make improvements.

Similarly, the real evaluation of the protocol itself, will come after there is more experience

with its use. What can be said now is that it is implementable in our environment, and it seems

extensible.

It was mentioned in section 3.3 that the implementation of the resolver could be seen as a

partial evaluation or the interprocess communication mechanisms in Berkeley UNIX 4.2 BSD. My

experience here is that these mechanisms are functionally adequate, but difficult to learn and use.

ivly hope is that the resolver will be a partial solution to these problems.

It is now time to discuss the limited data which is available on the resolver. This data is

limited to the cpu time and memory space requirements of a test process using the resolver. Only

the time consumed by the cpu is included since is extremely difficult to estimate the additional

load placed on other components of the system. The space requirements can be determined by

examining the program's symbol table. However, the time requirements must be determined by

experiment. The purpose of the experiments we have run so far were two-fold. First, to give a

rough idea of the complexity of the resolver. Second, to evaluate the caching strategy which was

used.

It is very time consuming to set up experimental databases and to run name servers which

contain these databases on appropriate hosts. So, the experiments are limited to very simple

situations: specifically, we submitted fifty standard queries for data located on a name server

which is running on a separate machine on the same Ethernet. Two cases were considered. First,

the data is never present in the resolver's cache. Second, it is always present in the resolver's

cache after the first query.

With the results from the first experiment it is possible to estimate the lookup cost in the

case of a local area network where a central name server is used. It will also be possible to esti

mate the extent to which the resolver's caching mechanism contributes to that cost.

The second experiment makes it possible to estimate the fixed costs associated with making

a query in a long running process. The initialization costs are relatively small and can be amor

tized over the fifty queries. So, this experiment makes it possible to estimate the savings which

will be realized by the presence of a very successful cache.

The two experiments allow us to estimate the hit ratio which would be needed to justify

using the cache. It should be remembered that there are many mitigating factors. The statistics

vary somewhat depending on the lo::.d of the system, and version of the kernel. A new set of dev

ice drivers was installed during the '=Ourse of the experiments and this affected the running times.

The profiling package uses the !!')'Stem clock to sample which routine is running and therefore the

time attributed to a particular routine is not precise. The resolver is not a fully tuned piece of

code. Therefore, a concentrated effort to optimize the routines which handle the resolver's coche

- 27-

might significantly decrease the portion of the running time which £s spe!lt in them. The benefits

oC directing a query to the most appropriate name server first are not considered. LMtly, the load

generated on other components of the system is not measured and may be considerz.ble. With the

above in mind, here are the results of the two experiments.

Fifty Queries and Fifty Queries and
Forty Nine Cache Fifty Cache 1'-'fisses
Hits

"'-·. Total Running Time 0.43 seconds un seconds

Percent or Time
Spent in Garbage 00.0% 11.8%

Collection (0.22 seeonds)

Time Saved due
To Cache Hits 1.26 seconds O.CO seconds

Table 4

In the above table, the time spent in garbage collection is a good estimate or the ti."'le cost

or caching. because the other activities or the resolver are necess~ry even if the caching mechan

ism is turn:od off. The time spent in garbage collection does not account for some costs o(cach

ing, such as additional hash table collisions, but such costs are very small in comparison to the

cost of garbage collection. The time spent in the process with the successful cache is a good esti

mate or the time cost of initializing the resolver and manipulating its data structures. Thus, the

time cost of sending 49 queries and receiving 49 responses can be estimated by subtracting the

time spent in garbage collection and the time spent in the process with the successful cache from

the running time of the process with the unsuccessful cache.

An estimate of the hit ratio which is necessary to justify using the cache can be made as fol

lows. Obtain the time to send and receive a query by dividing 1.26 seconds by 49 queries yielding

0.0257 seconds per query. Then determine how many queries can be sent and received in 0.22

seconds (the time spent in garbage collection) by dividing 0.22 by 0.0257. The result is it would

take about 8.5 cache hits out of 50 queries to break even. This translates to a hit ratio around 17

percent. I make no claim that this is anything more than a very rough estimate.

Assuming that this estimate is reasonable, two conclusions follow. First, the potential

benefits of caching resource records are great enough to justify the effort of implementin~ a nuc

cessful strategy for doing so. Second, it is likely that there are applications of name services

which do not make predictable sequences of queries and do not query distant domains. The the

small, per-process cache which bas been implemented will not be useful in these applications,

because it will be impossibie to maintain a high enough cache hit ratio to justify using the c::u:he.

So, the current caching strategy is not entirely satisfactory.

The other purpose of the experiments was to provide information about the complexity of

the resolver. The cpu time required by the resolver has already been indicated in Table 4.

The space requirements of the resolver are substantial. The working set of the test process

is about lOOK bytes. This is somewhat mitigated by the fact that much of this space is occupied

by system routines which the resolver calls, and usef'3 are also likely to need. Also, s<;;ne of this

space is occupied by debulging code. The size of the code and data that the resolver would

directly contribute to a user process is close to 23K bytes. When the caching mechanism is used

another 12K bytes will be alloo=ated on the heap, unless a large virtual circuit response is received.

In theory, the heap space could grow to over 64K bytes, but this is unlikely. When caching is dis

abled, the heap space requirements will be slightly smaller, but will similarly depend on the size

of responses. Still, the space the resolver occupies is b.rge enough that sharing code a~d data

- 28-

between processes would be desirable if there were an easy way to do it.

The bottom line in this discus:::!on is that the r~solver is a relatively expensive utility to

invoke. However, this is a function of its task. The time complexity of the resolver compares

well with the time complexity of sending and receiving a datagram. It is harder to find an easy

comp3rison for the resolver's space requirements. There are probably some e:wings to be h:l.d, but

I believe that most of the space occupied by the resolver is required by the complexity of its

tasks.

8. Future Work

There is a great deal more work that needs to be done on this project. This s~tion points

out the things which have been !eft undone.

_8.1. Moving Towarda Production Use

"'-· The resolver is a tool, and tools are worthless without applications. There are many poten

tial applications, but none have yet been implemented. This is a fundamental next step in the

development of the resolver.

Once, the resolver has been tested in production use, a substantial amount of work will need

to be done to replace the host table. Changing over to the domain names system will be a deli

cate procedure. The difficulty of doing this should not be underestimated, and was a good incen

tive for including things in the propoeal which were not immediately necessary.

One such feature is user updates. It is encouraging that the mechanics of performing user

updates can be easily incorporated into the framework of the domain names proposal. However,

the usefulness of user updates will be severely restricted until the related security problems are

solved. It would be best if these problems were solved before the resolver is embedded in the sys

tem.

8.2. Further Experiments

Another important, but less pressing, concern is with tuning the performance or both

resolvers and name servers. There are a large number or ways this can be done. Section 4.3.2 of

this report discussed a variety of techniques for obtaining cache data. It is not known which or

these techniques is best, either in general or for a particular set or applications or 3 particular

environment.

Section 2.2.3 mentioned that there was 3 three-way trade-oft' between reliably obtaining con

:>istent data, space used in storing redundant copies or data items, and the number of messages

which would be transmitted. So, not only are the best mech::misms for caching data not known,

but also the wisdom of caching the data has not been proved.

A related issue is the placement of the original data in primary and authoritative name

servers. There are many possibilities here. A particular organization could have one centralized

name server, or there could be several different name servers, each of which was responsible Cor

some logical subset of the data, or each machine could have a name server which was responsible

for the data local to that machine. The consequences of such choices have not been considered

and are not known.

The above paragraphs are not meant to be an exhaustive list or the possibilities for increas

i,1g perform:lnce. They are meant to point out that there are very many design choices still to be

made. There is a real need for a systematic way of evaluating and testing possible organizations

of resolvers and name servers.

8.3. A Shared Memor;r lmpleme!ltatlon

Section 4.1 mentioned the possibility or moving the resclver's code and data into the Berke

ley UNIX kernel. The motivation for this was to avoid having a copy or the resolver code in

every process which used the resoiver and to provide an efficient way or maintaining a per

machine cache. It is not known ir such a move would be worth the loss or flexibility. Also, some

- 29-

features in the current design. of the resolver would have to be changed. Specifically, the

resolver's data structures are not designed with mutual exclusion in mind, and the current gar

bage collection strategy is not appropriate for a cache in which data persists for more than a few

rounds of garbage collection, since it is wasteful to continually recopy data.

So, there are two thin3s to be done in this area. First, determine if the resolver should be

part of the kernel. Second, if it is to be moved into the kernel, make the necessary changes in the

implementation. This choice is intimstely related to an investigation of caching techniques and

strategies.

7. Conelualon

The work that has been done so far is an important first step. A tool must exist before it

can be applied. The current design is a basis for comparison and testing. !t does not specify

what security problems must be solved, but it does provide a context for their definition and

eventual solution.

Although this report has suggested extensions to the original proposal, the basic design of

the name server protocol seems sound. At least, the portion of the proposal dealing with the

resolver is workable. A resolver can be implemented with moderate effort, and the resolution of a

qu~ry makes moderate demands on memory space and processing time.
"'-·

Acknowledgements

Finally, there are several people whose assistance deserves to be acknowledged. Dave Rig

gle, Doug Terry and Songnian Zhou are the other members or our group. We have had many

helpful conversations, and my work has very much depended on their complementary efforts.

Luis Filipe Cabrera and Domenico Ferrari have read earlier versions of this report, and have

made many suggestions which have improved its quality. Paul Mockapetris authored the support

ing rfc's. Ruth Brungardt was very helpful during our efforts to debug communications with the

name server being implemented at lSI. However, I alone am responsible for any errors in this

document.

References

[Bem81J

[Denn82j

[LefJ83j

[RFC 768J

[RFC 791J

[RFC 881J

[RFC 882J

[RFC 883J

[Rigg84J

[Zbou84J

- 30-

P. Bernstein and N. Goodman, "Concurrency Control in Dist:.-ibuted Database

Systems," Computing Surveys, June 1981

D. Denning, "Cryptography and Data Security," reading, chapter 1, Addison

Wesley Publishing Company, 1982

S. Lemer, R. Fabry, W. Joy, "A 4.2bsd Interprocess Communication Primer,"

University or California at Berkeley, July 1983

J. Postel, "User Datagram Protocol" RFC 768, USC/Information Sciences Insti

tute, August 1980

J. Postel, "Internet Protocol - DARPA Internet Program Protocol

Specification," RFC 791, USC/Information Sciences Institute, September 1981

J. Postel, "Transmission Control Protocol" RFC 793, USC/Information Sci

ences Institute, September 1981

P. Mockapetris, "Domain Names - Plan and Schedule," RFC 881,

USC/Information Sciences Institute, November 1983

P. Mockapetris, "Domain Names - Concepts and Facilities," RFC 882,

USC/Information Sciences Institute, November 1983

P. Mockapetris, "Domain Names - Implementation and Specification," RFC

883, USC/Information Sciences Institute, November 1983

D. Riggle, "A Name Server Database," University or California at Berkeley,

May 1984

S. Zhou, "The Design and Implementation or the Berkeley Internet Name

Domain (BIND) Servers," University of California at Berkeley, May 1984

- 31-

Appendix A: Proposed Changes to Name Server Protocol

Additions to Paek~t Header

New bit flag(s): Primary Required

When this bit is set authoritative name servers deny their a:1thority for the domain

unless they are the primary server. This is for standard queries which require immediate

access to the updated data, as with process rendezvous.

This bit ftag is not strictly necessary, but it considerably simplifies the method of locat

ing a. primary name server for queries which are not updates. The alternative is a three step

process which both complicates the coding or the resolver and leads to an increased number or

messages. The three steps are to locate an authoritative name server, query that server for

the start of authority record for the zone, and then to send the q•1ery to the primary name

server.

It should be noted that in the case of process rendezvous, the i::;sue can be avoided by

requiring processes to register in a zone that is not replicated. However, there may be other

applications where this is not an acceptable solution.

JleW opcodes:

upilttea

This opcode indicates the addition of a single resource record to the name server data

base. Packet consists of header and an additional resource record, which is the resource

record to be added to the name server data base.

updated

Here, the packet consists of header and an additional resource record, which is the

resource record to be deleted from the name server data base. If the data portion of the

resource record in the packet is of zero length, the deletion is to apply to all resource records

of the given type and class for the given domain name. It should abo be possible to specify

wild cards in the type and class fields.

updatem

Here, the packet consists of header and two additional resource records. The first is the

resource record in the data base to be modified. The second is what it is to be modified to.

As with delete, no data implies replace all records of the given type, class and domain name

with the single new record. To avoid the possibility that the modification could span mac~ine

boundaries, the domain names of the two records must be identical.

A modify may fail if neither the old or new data is present. In t~il case, the resrc:c.se is

"no such domain name".

New Return Code(s): NO CHANGE

This return code is advisory only, it means that an update did not affect the d::.ta base.

Perhaps, a response was lost and this was the second time the server received the update etc.

In general, it would be desirable to have more specific return codes. The existing propo

sal does not distinguish data that is not present from a type, class or domain name which is

not present. Such distinction would allow for more informative error messages.

Additional Data ln Presently Defined Types of Resource Records

At present, the name server records for the primary name server 2!ld other name servers

for the domain are indistinguishable. This fact greatly complicates methods for locating the

primary name server for a. zone. Therefore, name server records should be extended by one

octet to include an indication of whether or not they are primary for their zone.

There is not sufficient support for process level protocols. In general, such support

should be provided by extending address type resource records to optio::~aliy include a. process

address in addition to a host address. The most compelling reason icr ~xtending the current

- 32-

address type, rather than providing new types !or each process lev€! p:-Gtccoi, !J . ·;:hile

type and class information is orthogonal, process level protocols have E:tle me2.:::.::.:; ·.-. :'.hout

the underlying host level protocols.

In the internet case, this means extending the data section or v:!dress ::e::::rc:s by 3

octets. One octet to distinguish the protocol, and 2 octets for the pert number. A:E::-csses

which contained process specific information could be distinguished by t3.ei.r greater !u:::;~h.

The Update Query Algorithm

Updates are processed as st:lndard queries, except by authorit:J.ti~re name s::nrers, wl:ich

deny their authority unless they are the primary server. Name sene~ which deny their

authority return a name server and address resource record !or the pr:na..~ name server for

the zone.

An authoritative answer to an update query is an indication th:~.t the update was suc

cessful. In the case of add this means that the new record is in the d::.ta base. In the case or
delete, the record is not in the data base. In the case or modify, the old version is not ia the

5lata base, and the new one is. The body of the answer is simply the bcdy or the query.

--.....

